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Abstract

The objective of this paper is to present a more realistic and complete study of the geometrically non-
linear free vibrations of clamped immovable circular plates by taking into account the in-plane
deformation, which has not been examined in Part I of this series of papers (J. Sound Vibration 265
(2003) 123). The problem is solved by a numerical iterative procedure in order to obtain more accurate
results for vibration amplitudes up to twice the plate thickness. The numerical results thus obtained are
presented and compared with the available published results, and with the ones calculated when neglecting
the in-plane displacement for the first two non-linear axisymmetric mode shapes. An explicit analytical
solution is then presented and its range of validity, for the fundamental non-linear mode, is determined via
a detailed comparison with the solution based on the iterative procedure. The results obtained by the
explicit method show the usefulness of the new approach in comparison with the single mode approach
solution frequently used in non-linear vibration analysis of structures, and are expected to be easy to
implement in fatigue models in order to make more realistic and secure predictions of the structural fatigue
life.
r 2003 Published by Elsevier Ltd.
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1. Introduction

The use of thin plates-like structures is extensive in various modern engineering problems and
they are often subjected to severe dynamic loading. This may result in large vibration amplitudes
of these structures inducing a dynamic behaviour which is different in many ways from that
predicted by the classical linear theory. In such situations, it is necessary to include the
geometrical non-linearity when investigating the structural dynamic behaviour. The von K!arm!an
type of geometrically non-linear strain–displacement relationships is the most widely used in the
literature to derive the governing equations of motion of thin plate-structures. The governing
equations are coupled non-linear partial differential equations for which exact solutions are not
yet available. Numerical methods are often used for obtaining general solutions. Also, as pointed
out in Ref. [1], no general and systematic approach to non-linear problems is available which
allows all or at least most of the various non-linear effects to be described in a unified manner. For
example, the single mode approach was often adopted as a useful tool for investigating the effect
of geometrical non-linearity on resonant phenomena [2]. The single mode assumption permits
analytical solutions to be obtained for the amplitude frequency dependence and the non-linear
forced response. However, this assumption has been shown both theoretically and experimentally
to be insufficient for beams and plates in Refs. [1,3,4], since the mode shape thus assumed is
amplitude independent and therefore leads to linear patterns of the bending stress rather than the
non-linear patterns. In the study of geometrically non-linear axisymmetric vibrations of clamped
circular plates, the common approach has been to use an assumed space or time mode. The
different methods of solution used in the literature related to the subject of interest here have been
presented and discussed in Part I of this series of papers in which some references were given [5–
17]. Very recently, the finite element method has been applied to study non-linear free vibrations
of hinged orthotropic circular plates with a concentric rigid mass using von K!arm!an equations
[18], and geometrically non-linear free vibrations of polar orthotropic circular plates with various
boundary conditions, using the three-dimensional elasticity theory with all of the non-linear terms
retained in the strain expressions [19]. Since the single mode approach is not completely adequate
for the study of geometrically non-linear free vibration of thin structures as mentioned above,
multimode analyses are needed in order to determine accurately the amplitude-dependent non-
linear frequencies and the associated non-linear mode shapes. The latter are of crucial importance
in engineering problems because the stresses are related to the first and second derivatives of the
mode shape. In Part I of this series of papers [20], a theoretical multimodal model based on
Hamilton’s principle and spectral analysis, which reduces the non-linear free vibration problem to
solution of a set of non-linear algebraic equations, was used in order to study the effect of large
vibration amplitudes on the non-linear natural frequencies and mode shapes of the first two non-
linear axisymmetric mode shapes of clamped circular plates. This model allows quantitative
estimates of non-linear stresses to be obtained in sensible regions of the structure, which may be of
crucial importance in the fatigue life prediction of structures working in or exposed to a severe
environment. However, the model used in Ref. [20] was restricted in a sense that only the
transverse displacement was considered in the formulation. In the present paper, geometrically
non-linear free vibrations of clamped immovable isotropic circular plates are investigated by using
the multimodal model mentioned above taking into account not only the coupling between the
higher vibration modes but also the influence of the in-plane deformation. By assuming harmonic
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transverse motion, the in-plane and out-of-plane displacements are expanded in the form of finite
series of basic functions, namely the linear free vibration modes of the clamped immovable
circular plate, obtained in terms of Bessel’s functions. The discretized expressions for the total
strain and kinetic energies are then derived. The application of Hamilton’s principle reduces the
large amplitudes free vibration problem to a set of coupled non-linear algebraic equations in terms
of the contribution coefficients of the in-plane and out-of-plane basic functions. When the in-
plane inertia is neglected, the above set may be reduced, via a simple analytical transformation, to
a set of non-linear algebraic equations in terms of the contribution coefficients of the out-of-plane
basic functions only. This reduced set is formally similar to that derived in Part I but with a
different fourth order tensor, which now also includes the influence of the in-plane radial
displacement. This set of non-linear algebraic equations represents a non-linear eigenvalue
problem, which reduces to the well-known linear eigenvalue problem derived from Rayleigh–Ritz
analysis when the non-linearity is omitted. The non-linear eigenvalue problem needs to be solved
iteratively. The non-linear iterative procedure described in Refs. [21,22] is used here as a first
approach for accurate determination of the non-linear resonant frequencies, the deflection shapes
and the distributions of the associated membrane, bending and total stresses, for the first two
clamped circular plate non-linear axisymmetric mode shapes, at various non-dimensional
amplitudes. The results obtained from the proposed model are discussed and compared with
available published results and also with the results obtained when the in-plane deformation is
neglected.
In a second approach, an explicit solution, which may be appropriate for engineering purposes,

or for further analytical investigations, is proposed and discussed in the present paper. This
method of solution is based on the linearization of the set of non-linear algebraic equations in the
neighbourhood of each resonance. The proposed explicit analytical solution is more accurate than
the single mode approach solution since it leads also to amplitude-dependent mode shapes and
non-linear bending stress patterns, and is as accurate as the iterative method of solution for a
certain range of vibration amplitudes to be determined in each case, as illustrated in Section 4.2 in
the case of the fundamental non-linear mode shape of a clamped immovable circular plate.

2. General formulation

2.1. Mathematical model

Consider a circular plate of thin uniform thickness h and radius a that is clamped along its edge.
The co-ordinate system is chosen such that the middle plane of the plate coincides with the ðr; yÞ
plane, the origin of the co-ordinate system being at the centre of the plate with the z-axis
downward, as shown in Fig. 1. The plate is made of an elastic, homogeneous isotropic material.
In large amplitude axisymmetric vibrations of circular plates, the non-vanishing components of

the strain tensor are given by [9]
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where U is the middle plane in-plane radial displacement and W is the out-of-plane transverse
displacement.
The total strain energy, V ; of the circular plate is given as the sum of the strain energy due to

bending ðVbÞ and the membrane strain energy induced by large deflections ðVmÞ: V ¼ Vb þ Vm: In
the case of axisymmetric vibrations, the bending strain energy of the clamped circular plate has
been shown to reduce to [20]

Vb ¼ pD

Z a

0

@2W

@r2

� �2

þ
1

r2
@W

@r

� �2
" #

r dr ð2Þ

in which D ¼ Eh3=ð12ð1� n2ÞÞ is the bending stiffness of the plate, and E and n are Young’s
modulus and the Poisson ratio of the plate material.
In terms of displacements, the expression for the membrane strain energy induced by large

deflections for an axisymmetric circular plate is given by [23]
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The total strain energy, V ; is then given by

V ¼ pD
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The kinetic energy, T ; of the circular plate is

T ¼ prh
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in which rotatory inertia is neglected and r is the mass per unit volume of the plate material.
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Fig. 1. Clamped circular plate notation.
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As mentioned in the introduction, the most common approach in the seek of approximate
solutions of geometrically non-linear vibration of structures is the separation of space and time
functions. Furthermore, previous experimental and theoretical studies concerned with beams and
plates [1,24,25] have shown that harmonic distortion of the non-linear response of the structure
excited harmonically occurs at large vibration amplitudes. In the case of free vibration of thin
plates, the temporal function often takes the form of a Fourier cosine series as used in Refs. [26–
28] in which only odd harmonics are retained, due to the character of cubic non-linearity.
However, as discussed in Ref. [29], the separation of harmonics carried out in Refs. [1,24] on the
measured response signals at various points of a plate excited non-linearly, at various excitation
levels, has shown that the higher harmonic components remain very small, compared with the
first-harmonic component of the response. Also, the theoretical study made in Ref. [28] has shown
that the time series converge very rapidly and that there is only a very little difference between
using the first harmonic and the first two harmonics in the Fourier series expansion.
An experimental observation corresponding to large amplitude plate vibrations has also been

made in Ref. [30], in the case of an annular plate with a free inside edge and a built-in outside
edge, in order to justify the steady state harmonic form of the time co-ordinate function used in
Ref. [31], for finite amplitude vibrations of thin annular and circular plates. By comparing the
bending and membrane strain wave forms generated by two circumferential strain gauges, the
authors concluded that the assumed time-mode solutions ðsinðotÞ for the transverse displacement
and sin2ðotÞ for the stress function) yield favourable results.
Based on these considerations, the transverse displacement function W ðr; tÞ has been assumed

in the present paper, which is mainly concerned with the amplitude dependence of the first-
harmonic component spatial distribution, to be given by

W ðr; tÞ ¼ wðrÞ cosðotÞ: ð6Þ

The in-plane radial displacement function Uðr; tÞ is taken in the following form:

Uðr; tÞ ¼ uðrÞ cos2ðotÞ: ð7Þ

A similar assumption has been made in Refs. [9,10] for the stress function and in Ref. [32] for the
in-plane displacement function. It is to be noted that in one-term Galerkin procedures in both
stress function and displacement approaches, if the transverse function is assumed to be in the
form: W ðr; tÞ ¼ wðrÞqðtÞ; then the temporal function taken for the stress function [5], or the in-
plane displacement function [6] is q2ðtÞ:
The spatial functions uðrÞ and wðrÞ are expanded in the form of finite series of pi and po in-plane

uiðrÞ and out-of-plane wiðrÞ basic functions, respectively, as follows:

wðrÞ ¼ aiwiðrÞ; uðrÞ ¼ biuiðrÞ; ð8Þ

where the usual summation convention for repeated indices is used from 1 to po and from 1 to pi
for the ai’s and bi’s coefficients respectively.
The discretized forms for the total strain and kinetic energies are respectively given by the

following expressions:

V ¼ 1
2

aiajk
1
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2
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1
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2
ij� cos

4ðotÞ; ð9Þ

T ¼ 1
2
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1
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2ðotÞ þ bibjm
2
ij sin

2ð2otÞ�: ð10Þ
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In these equations, m1
ij ; m2

ij ; k1
ij; k2

ij are the mass and rigidity tensors associated with W and U ;
respectively, b1ijkl and cijk are, respectively, a fourth order and a third order non-linearity tensors.
The general terms of these tensors are given by
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It appears from Eqs. (11) that the mass and rigidity tensors are symmetric, and the fourth order
tensor b1ijkl and the third order tensor cijk are such that

b1ijkl ¼ b1klij ¼ b1jilk ¼ b1ikjl ; cijk ¼ cjik: ð12Þ

The dynamic behaviour of the structure is governed by Hamilton’s principle, which is
symbolically written as

d
Z 2p=o

0

ðV � TÞ dt ¼ 0: ð13Þ

Replacing V and T by their discretized expressions in Eq. (13), integrating the time functions,
calculating the derivatives with respect to the ai’s and bi’s, and taking into account the properties
of symmetry of the tensors involved, leads to the following set of non-linear algebraic equations:

2aik
1
ir þ 3aiajakb1ijkr þ

3
2

aibkcirk � 2o2aim
1
ir ¼ 0; r ¼ 1;y; po;

3
4 ðaiajcijs þ 2bik

2
isÞ � 2o2bim

2
is ¼ 0; s ¼ 1;y; pi: ð14Þ

To simplify the analysis and the numerical treatment of the set of non-linear algebraic equations,
non-dimensional formulation has been considered by putting the spatial displacement func-
tions as

wiðrÞ ¼ hw�i ðr
�Þ; uiðrÞ ¼ lhu�i ðr

�Þ; ð15Þ

where r� ¼ r=a is the non-dimensional radial co-ordinate and l ¼ h=a is a non-dimensional
geometrical parameter representing the ratio of the plate thickness to its radius.
Eqs. (14) can be written in a non-dimensional form as

2aik
1�
ir þ 3aiajakb1�ijkr þ

3
2

aibkc�irk � 2o�2aim
1�
ir ¼ 0; r ¼ 1;y; po;

3
4
ðaiajc

�
ijs þ 2bik

2�
is Þ � 2l2o�2bim

2�
is ¼ 0; s ¼ 1;y; pi; ð16Þ
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where o� is the non-dimensional non-linear frequency parameter defined by

o�2 ¼
rha4

D
o2: ð17Þ

The m1�
ij ; m2�

ij ; k1�
ij ; k2�

ij ; c�ijk and b1�ijkl terms are non-dimensional tensors related to the dimensional
ones by the following equations:

ðm1
ij ;m

2
ijÞ ¼ 2pra2h3ðm1�

ij ; l2m2�
ij Þ;
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2
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ijklÞ: ð18Þ

These non-dimensional tensors are given by
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b1�ijkl ¼ 3

Z 1
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dw�k
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r� dr�: ð19Þ

In the case of thin plates for which l is very small, the influence of the in-plane inertia involving
the term l2 can be neglected. This assumption of neglecting in-plane inertia, which is an
acceptable assumption in most engineering applications of thin plates [33], is generally adopted in
the study of geometrically non-linear vibrations of thin plates. In this case, the second set of
equations in Eq. (16) can be solved for the bi’s leading to

bi ¼ ajald
�
jli; i ¼ 1;y; pi; ð20Þ

where d�ijk ¼ � 1
2

k2��1

kl c�ijl ; is a third order tensor expressing the coupling between in-plane and
transverse vibrations, in which k2��1

ij represents the inverse of the tensor k2�
ij : Substituting Eq. (20)

into the first set of Eqs. (16) leads to an uncoupled set of non-linear algebraic equations in terms
of the ai’s coefficients only

aik
1�
ir þ 3

2
aiajakb�ijkr � o�2aim

1�
ir ¼ 0; r ¼ 1;y; po: ð21Þ

Here, b�ijkl is a fourth order tensor given by

b�ijkl ¼ b1�ijkl þ
1
2 c�ijnd�kln: ð22Þ

In some studies on non-linear vibrations of circular plates [15,16,20], the in-plane radial
displacement is neglected. If this assumption is used in our formulation, a similar set of non-linear
algebraic equations, depending on the contribution coefficients ai (i ¼ 1� po), is obtained
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as follows:

aik
1�
ir þ 3

2
aiajakb1�ijkr � o�2aim

1�
ir ¼ 0; r ¼ 1;y; po: ð23Þ

The effects of neglecting the in-plane displacement on the non-linear vibration behaviour of
clamped immovable circular plates will be discussed throughout this paper.

2.2. Numerical details for the clamped immovable circular plate

The chosen out-of-plane basic functions w�i ðr
�Þ for a clamped axisymmetric circular plate are

given by [20]

w�i ðr
�Þ ¼ Ai J0ðbir

�Þ �
J0ðbiÞ
I0ðbiÞ

I0ðbir
�Þ

� 	
; ð24Þ

where bi is the ith real positive root of the transcendental equation

J1ðbÞI0ðbÞ þ J0ðbÞI1ðbÞ ¼ 0 ð25Þ

Here Jn and In are, respectively, the Bessel and the modified Bessel functions of the first kind and
of order n: The parameter bi is related to the ith non-dimensional linear frequency parameter
ðo�c Þi of the plate by

b2i ¼ ðo�c Þi: ð26Þ

Numerical values of bi are computed numerically by solving Eq. (25) and the first 10 values are
given in Table 1.
The chosen in-plane basic functions u�i ðr

�Þ for an immovable axisymmetric circular plate are
given by [13]

u�i ðr
�Þ ¼ BiJ1ðair

�Þ; ð27Þ

where ai is the ith real positive root of the equation J1ðaÞ ¼ 0; from which the first 10 numerical
values of aj are computed and are listed in Table 1. The functions w�i ðrÞ and u�i ðrÞ are normalized
in such a manner that

m1�
ij ¼

Z 1

0

w�i w�j r� dr� ¼ dij ;

m2�
ij ¼

Z 1

0

u�i u�j r� dr� ¼ dij: ð28Þ

The first six out-of-plane basic functions w�i are shown in Ref. [20] and the in-plane basic
functions u�i (i ¼ 1–6) are given in Fig. 2.
The parameters k1�

ij ; k2�
ij ; c�ijk and b1�ijkl involved in the model were computed numerically by

using Simpson’s rule with 160 steps in the range [0,1].
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3. Methods of solution

The set of non-linear algebraic equations (21), also called the amplitude equation, can be
written in a matrix form as

ð½K1�� þ ½Knl��ÞfAg � o�2½M1��fAg ¼ f0g; ð29Þ

where ½M1��; ½K1�� and ½Knl�� are the non-dimensional mass matrix, the non-dimensional linear
stiffness matrix and the non-dimensional non-linear geometrical stiffness matrix respectively.
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Fig. 2. The first six in-plane basic functions of the clamped immovable circular plate.

Table 1

Numerical values of the clamped immovable circular plate parameters ai and bi intervening in the expressions of the

in- and out-of-plane basic functions, respectively, for i ¼ 1–10

i ai bi

1 3.83170597020751 3.19622061658254

2 7.01558666981562 6.30643704768842

3 10.17346813506272 9.43949913787641

4 13.32369193631422 12.57713064043065

5 16.47063005087763 15.71643852680748

6 19.61585851046824 18.85654552222951

7 22.76008438059277 21.99709515760648

8 25.90367208761838 25.13791540603749

9 29.04682853491686 28.27891310951825

10 32.18967991097441 31.42003344728260
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Each term of the matrix ½Knl�� is a quadratic function of the column matrix of coefficients
fAg ¼ ½a1a2yapo�t; and is given by ðKnl�Þij ¼ ð3=2Þakalb

�
ijkl : It can be seen that when the non-

linear term is neglected, the non-linear eigenvalue problem (29) reduces to the classical eigenvalue
problem

½K1��fAg ¼ o�2½M1��fAg ð30Þ

which is the Rayleigh–Ritz formulation of the linear vibration problem. In the linear case, the
eigenvalue equation (30) leads to a series of eigenvalues and corresponding eigenvectors. In the
non-linear case, the solution of Eq. (29) should lead to a set of amplitude-dependent eigenvectors,
with their amplitude-dependent associated eigenvalues. In this paper, in order to determine the
r0th non-linear axisymmetric mode shape of the clamped immovable circular plate, two methods
of solution are used, which are discussed in the next two subsections.

3.1. Iterative method of solution

The iterative method of solution adopted here is that used in Refs. [21,22,34] for fully clamped
isotropic and laminated rectangular plates. This method consists of solving successive linear
eigenvalue problems by starting from the linear eigenvalue problem (30) until the convergence of
the value of the eigenvalue o�2 is achieved, leading also to the normalized eigenvector fAg;
corresponding to the mode considered, according to the specified amplitude of vibration
considered. It is to be noted that the non-linear stiffness matrix ½Knl�� is calculated in each
iteration from the scaled eigenvector according to the specified amplitude of vibration obtained at
the centre of the circular plate. For further details on this numerical iterative procedure, the reader
is referred to Refs. [21,22].
For the r0th (r0 ¼ 1 or 2) non-linear axisymmetric mode and for a given amplitude of vibration

w�max; the numerical iterative procedure determines accurately the non-dimensional non-linear
frequency parameter o� and the corresponding normalized eigenvector fAg; which in turn gives
the r0th non-linear axisymmetric mode shape: w�ðr�Þ ¼ aiw

�
i ðr

�Þ; i ¼ 1� po: The corresponding
in-plane shape function, i.e., u�ðr�Þ ¼ biu

�
i ðr

�Þ; i ¼ 1� pi; is determined by computing the in-
plane contribution coefficients bi from Eq. (20). Also the associated non-linear bending and
membrane stresses can be determined quite easily (see Appendix A for stress details).

3.2. Explicit analytical solution

The purpose here is to replace the iterative method of solution of the set of non-linear algebraic
equations (21), necessary to obtain the clamped circular plate non-linear axisymmetric mode
shapes and associated non-linear resonant frequencies at large vibration amplitudes, by an explicit
solution, which may be appropriate for engineering purposes, or for further analytical
investigations. The single mode assumption, which consists of neglecting all of the co-ordinates
except the single resonant co-ordinate, has been widely used in the study of geometrically non-
linear vibration of structures. This is due to the great simplifications it introduces in the theory on
one hand, and on the other hand because the error it induces in the estimation of the non-linear
frequency remains very small for a wide range of vibration amplitudes [2]. However, the single
mode approach is insufficient because it does not give any information about the amplitude
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dependence of the structure deflection shape, with its practically important effect on the strain and
stress distributions, which are quantities of crucial importance with respect to the structural
fatigue life prediction [35]. The explicit method of solution remedies this insufficiency by
maintaining the multimode character of the solution, and also takes advantage of the accuracy of
the single mode approach concerning the amplitude frequency dependence. Thus, rather than
neglecting the contributions of all of the non-resonant modes as is the case in the single mode
approach, these contributions are regarded as small compared to the r0th resonant mode
contribution ar0 ; and denoted in what follows as ei ðiar0Þ: To illustrate the method, the
fundamental non-linear mode shape is considered here by taking r0 ¼ 1: The analysis for the
higher non-linear modes would proceed similarly. A less constraining assumption, compared to
the single mode approach, is made by neglecting in the expression aiajakb�ijkr; appearing in
Eq. (21), the first, second and third order terms with respect to ei; i.e. terms of the type a21ekb�11kr or
of the type a1ejekb�1jkr or of the type eiejekb�ijkr; so that the only remaining term is a31b

�
111r: Thus,

Eq. (21) becomes

aik
1�
ir þ 3

2
a31b

�
111r � o�2aim

1�
ir ¼ 0; r ¼ 1;y; po ð31Þ

in which the repeated index i is summed over the range ½1; po�: Since the use of linear clamped
circular plate mode shapes as basic functions leads to diagonal mass and rigidity matrices, the
above system can be rewritten as

ark
1�
rr þ 3

2
a31b

�
111r � o�2arm

1�
rr ¼ 0; r ¼ 1;y; po ð32Þ

in which no summation is involved. The first equation of this set corresponding to r ¼ 1 leads to

o�2 ¼
k1�
11

m1�
11

þ
3

2

b�1111
m1�
11

a21 ð33Þ

which is the same formula as that obtained in Ref. [2] by using the single mode approach and the
harmonic balance method to the problem of geometrically non-linear beam vibrations. It is to be
noted here that formula (33) is slightly different from that used in Part I of this series of papers,
based on the principle of conservation of energy, due to the presence of the factor 3/2. Such a
difference, which affects slightly the non-linear frequency estimates, has been encountered
previously in similar non-linear problems, and discussed for example in Ref. [3]. The ðpo � 1Þ
remaining equations can be written as

ðk1�
rr � o�2m1�

rr Þer ¼ � 3
2

a31b
�
111r; r ¼ 2;y; po ð34Þ

which permits one to obtain explicitly the unknown basic function contributions e2;y; epo in
terms of the predominant first basic function contribution a1 as follows:

er ¼ �
3a31b

�
111r

2ðk1�
rr � o�2m1�

rr Þ
; r ¼ 2;y; po: ð35Þ

Inserting Eq. (33) into Eq. (35) and recalling that in the case considered here, the mass matrix is
identical to the identity matrix, Eq. (35) may be simplified to

er ¼
3a31b

�
111r

2ðk1�
11 þ 3

2
a21b

�
1111 � k1�

rr Þ
; r ¼ 2;y; po: ð36Þ
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Expression (36) is an explicit simple formula, allowing direct calculation of the higher mode
contributions to the first non-linear clamped circular plate mode shape, as functions of the
predominant first mode contribution a1 and the known parameters k1�

rr and b�111r: Thus, for each
value of the amplitude coefficient a1; corresponding to a given maximum non-dimensional
vibration amplitude, the first non-linear amplitude-dependent clamped circular plate mode shape,
w�nl1ðr

�; a1Þ; can be defined as a series involving the clamped circular plate modal parameters,
depending on the sufficient number po of axisymmetric clamped circular plate functions
w�1 ;w

�
2 ;y;w�po

w�nl1ðr
�; a1Þ ¼ a1w

�
1 ðr

�Þ þ
Xpo

r¼2

3a31b
�
111r

2ðk1�
11 þ 3

2 a21b
�
1111 � k1�

rr Þ
w�r ðr

�Þ ð37Þ

in which the predominant term, proportional to the first linear mode shape, is a1w
�
1 ðr

�Þ; and the
other terms, proportional to the higher linear mode shapes w�2 ðr

�Þ;y;w�poðr
�Þ; are the corrections

due to the non-linearity.
This amplitude-dependent mode shape permits the determination of the distribution of the

associated non-linear bending stress of the clamped immovable circular plate. To determine the
distribution of the associated membrane stress, the in-plane displacement coefficients bi

(i ¼ 1� pi) have to be determined. Since the main concern here is to seek approximate explicit
solutions, two simplified formulations for the determination of the bi’s coefficients with a quite
small number of structural modal parameters are presented in the following:

* First formulation

As a first approximation for determination of the bi’s coefficients, one can proceed as
above by neglecting in the expression aiajd

�
ijk appearing in Eq. (20) both first- and second

order terms with respect to ei; so that the in-plane contribution coefficients are simply
given by

bi ¼ a21d
�
11i; i ¼ 1� pi: ð38Þ

In this case, the in-plane shape function u�ðr�Þ is directly given by the following series:

u�ðr�Þ ¼ a21d
�
11iu

�
i ðr

�Þ ð39Þ

in which a summation is made over the repeated index i:
* Second formulation

An improvement could be made to Eq. (38) by adding the first order term a1eld
�
1li ðl > 1Þ; so

that the in-plane basic function contribution coefficients are given by

bi ¼ a21d
�
11i þ

Xpo

l¼2

a1eld
�
1li; i ¼ 1� pi: ð40Þ

In terms of the predominant contribution coefficient a1 and the known modal parameters of the
structure, the in-plane shape function is now given by

u�ðr�Þ ¼ a21 d�11i þ
Xpo

r¼2

3a21b
�
111rd

�
1ri

ð2k1�
11 þ 3a21b

�
1111 � 2k1�

rr Þ

" #
u�i ðr

�Þ: ð41Þ
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It will be shown later, that this second formulation improves significantly the membrane stress
estimates, for ranges of vibration amplitudes exceeding those permitted by the first formulation,
as discussed below. It is also noted here that the range of validity of this method of solution is
quite interesting from the engineering point of view, as will be seen when discussing the numerical
results. If more accurate results are needed for higher amplitudes, the so-called second
formulation developed in Refs. [35–37] for the transverse displacements can be used to extent
the range of validity of the results concerning the amplitude-dependent non-linear mode shapes,
and the associated non-linear stress distributions.

4. Numerical results and discussion

The non-linear free axisymmetric vibrations of a clamped immovable circular plate have been
examined here by using the two methods of solution discussed above. In order to determine the
sufficient number of in- and out-of-plane basic functions which achieve a good accuracy for large
vibration amplitudes, a convergence study is made by using the iterative method of solution. This
permitted determination of the number of basic functions to be adopted in the explicit solution,
and also its range of validity.

4.1. Iterative method of solution

4.1.1. Convergence study of the spectral expansion
The convergence study of the spectral expansions used in the model is discussed here for the

first and the second non-linear axisymmetric mode shapes. It is to be noted that the convergence
criteria should not be restricted to the non-linear frequency, as was the case in Refs. [21,34,38],
but must also involve the non-linear bending and membrane stresses, in order to obtain reliable
results with respect to engineering purposes. Figs. 3(a)–(c) show the effects of the number of in-
plane and out-of-plane basic functions on the non-linear frequency ratios, on the edge surface
bending stress and on the edge membrane stress, associated to the first non-linear axisymmetric
mode shape, respectively, for a value of the non-dimensional amplitude obtained at the plate
centre equal to 1.5. The numerical results presented in this paper are obtained with the Poisson
ratio, n ¼ 0:3: The influence of the in-plane displacement is clearly seen, which shows that it has to
be taken into account in the case of large vibration amplitudes of clamped circular plates, with a
minimum number pi ¼ 2: If the single mode approach is used ðpo ¼ 1Þ; it can be seen that the
frequency ratio may be well approximated, but the non-linear surface bending stress estimates are
not accurate. Also from Fig. 3(a), it can be concluded that pi ¼ po ¼ 3 is sufficient to obtain
accurate results for the non-linear frequency ratio. However, in this case, the membrane and the
non-linear bending stress will not be well approximated. Accurate estimates of these stresses is
achieved for at least pi ¼ po ¼ 5; as can be seen from Figs. 3(b) and (c). In-order to obtain more
accurate results for vibration amplitudes up to twice the plate thickness, the number of in-plane
and out-of-plane basic function is taken equal to 6 in the remainder of this paper ðpi ¼ po ¼ 6Þ:
For the second non-linear axisymmetric mode shape, the same procedure has shown that the
sufficient number of out-of-plane and in-plane basic functions to be used is po ¼ 8 and pi ¼ 8;
respectively.
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4.1.2. Amplitude frequency dependence
Most of the available results in the study of non-linear vibrations of clamped circular plates

have been concerned with determination of the so-called back-bone curves, especially for the
fundamental non-linear mode shape and only a very little number of references dealt with the
higher non-linear mode shapes. The dependence of the non-linear frequency on the non-
dimensional vibration amplitude is plotted in Fig. 4, for both the first and second non-linear
axisymmetric mode shapes of a clamped immovable circular plate showing a hardening spring
effect. The plot shows also that the first non-linear mode shape exhibits less change in frequency
with the vibration amplitude than does the second non-linear axisymmetric mode shape. Such a
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non-linear effect has been mentioned in Ref. [39] for the first two non-linear mode shapes of fully
clamped rectangular plates, and was explained by the fact that the deflection shape associated
with the first mode shape produces less induced tensile forces than does that associated with the
second mode shape for the same maximum displacement amplitude. Since no exact analytical
results are available, a detailed comparison has been made in Ref. [20] between all of the results
found in the literature during the period 1961–1986 concerning the amplitude–frequency
dependence of the first non-linear mode shape. As these results were based on various analytical
assumptions and numerical solution techniques, a general comparison was made by calculating
the average and the standard deviation of the non-linear frequency estimates obtained by various
methods for each amplitude of vibration. Table 2 shows the averaged non-linear fundamental
mode frequency ratios from Ref. [20] and the present results. It can be seen that the results of the
present work are in good agreement with the averaged ones. In the same table, the fundamental
non-linear mode frequency ratios of the clamped immovable circular plate obtained by using the
model without the in-plane displacement u are also given. It is noticed that the neglect of the
in-plane displacement in the formulation has an effect of increasing the hardening spring
behaviour of the clamped circular plate, as may be expected, since this assumption increases the
structural rigidity. For example, at an amplitude of vibration equal to once the plate thickness, the
difference between the two formulations is 5%, and increases to about 8% for an amplitude
equal to twice the thickness. Therefore, the von K!arm!an type of geometrically non-linear
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strain–displacement relationships including the in-plane displacement u should be used if more
accurate estimation of non-linear frequencies of clamped circular plates are needed.
For the second non-linear axisymmetric mode shape, a comparison is made in Fig. 5 between

the results obtained here and those obtained in Ref. [40], in which the stress function approach
was used and the formulation of the governing equations was based on the Galerkin procedure
and the harmonic balance method. The non-linear algebraic equations were solved by using the
Newton–Raphson method. The numerical results concerning the effect of the amplitude of
vibration on the non-linear frequencies were given by considering the root mean square value
(r.m.s.) of the dynamic response at the centre of the plate. It can be seen that the present results
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Table 2

Comparison of non-linear frequency ratios ðo�nc=o
�
c Þ of the fundamental mode of a clamped immovable circular plate

with and without the in-plane displacement and with the averaged results from Ref. [20]

w�max 0.2 0.4 0.6 0.8 1.0 1.5 2.0

Averaged 1.0073 1.0287 1.0632 1.1095 1.1663 1.3429 1.5499

Ref. [20]

Present work 1.0075 1.0296 1.0654 1.1135 1.1724 1.3568 1.5790

ð pi ¼ po ¼ 6Þ
Model with w 1.0108 1.0422 1.0917 1.1560 1.2318 1.4542 1.7025

only ð po ¼ 6Þ
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are in good agreement with the results of Ref. [40], with a maximum difference of 2.2% for a
maximum value of the non-dimensional amplitude of 1.34 corresponding to an r.m.s. value of 1.
The excellent agreement between the non-linear frequencies of the first two non-linear

axisymmetric mode shapes of clamped immovable circular plates obtained from the present model
and the numerical results published previously demonstrates the usefulness of the non-linear
model developed here to analyze the geometrically non-linear free vibration problem of clamped
immovable circular plates.

4.1.3. Amplitude dependence of the first and second non-linear axisymmetric mode shapes of
clamped immovable circular plates
Previous studies have shown that the mode shapes of beam- and plate-like structures are

amplitude dependent [3,4,9,21]. This effect is illustrated in the present case in Figs. 6(a) and (b), in
which the normalized non-linear mode shapes of the first two axisymmetric modes of a clamped
immovable circular plate are plotted respectively for various values of the maximum non-
dimensional amplitudes w�max: All curves show the amplitude dependence of the first and second
axisymmetric non-linear mode shapes and an increase of curvatures near to the clamped edge,
which may lead one to expect that the bending stress near to the edge of the plate increases non-
linearly with the increase of the vibration amplitude. It can be seen also that the mode shapes
become flatter near to the centre of the circular plate with the increase of the vibration amplitude.
It is therefore expected that the bending stress near to the plate centre will not increase as much as
it does in the linear case. Such a situation has been encountered in Ref. [41] in the case of a
clamped–clamped beam, and in Ref. [21] for fully clamped isotropic rectangular plates. All these
features will be discussed when analyzing the stresses. The influence of the amplitude of vibration
on the normalized in-plane displacement shape functions is also clearly shown in Figs. 7(a)
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and (b), associated respectively with the first and second non-linear axisymmetric transverse mode
shapes.
To investigate the effects of the in-plane displacement on the fundamental non-linear mode

shape of a clamped immovable circular plate, a comparison between the normalized mode shape
obtained from the present model with and without the in-plane displacement for a non-
dimensional maximum amplitude of 2.0 is made in Fig. 8, in which the fundamental linear mode
shape is also plotted. The difference between the non-linear mode shapes generated from the
present model with and without the in-plane displacement u is clearly seen especially in the central
part of the circular plate. The non-linear mode shape obtained by the model without the in-plane
displacement approaches the linear mode shape near to the centre of the plate, and the non-linear
mode shape obtained by the model with the in-plane displacement near to the clamped edge. It is
therefore expected that the non-linear bending stress estimates can be well approximated near to
the edge, but will be over-estimated near to the centre of the plate, when the in-plane radial
displacement is neglected.

4.1.4. Analysis of the radial bending, membrane and total stress distributions associated with the
first and second non-linear axisymmetric mode shapes

As shown previously, the present multimodal model enables not only determination of the
amplitude–frequency dependence, but also the deformation of the mode shapes due to the
geometrical non-linearity. From the latter result, it was expected that the effect of the amplitude
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of vibration on the distribution of the associated bending stress would be of greater significance,
since the bending stress is related to the derivatives of the amplitude-dependent transverse mode
shape. Figs. 9(a) and (b), in which the non-dimensional radial bending stress distributions
associated with the first and second non-linear axisymmetric mode shapes are plotted,
respectively, for various values of the vibration amplitude, show the amplitude dependence of
the bending stress distribution. It can be seen also from Figs. 10 and 11 that the non-linear
bending stress exhibits a higher increase near to the clamped edge, compared with that expected in
linear theory, but behaves in an opposite manner near to the plate centre. Figs. 10(a) and (b) show
that the results obtained here for the non-dimensional surface radial bending stress associated
with the first and second axisymmetric non-linear mode shapes at the clamped edge of the plate
increase very rapidly with the increase of the vibration amplitude. The rate of increase in the
radial bending stress is about twice the rate of increase expected in linear theory for the second
mode, and about 1.8 for the first mode, when the maximum non-dimensional amplitude increases
from 1.0 to 2.0. Figs. 12(a) and (b) display the radial membrane stress results associated
respectively with the first and second non-linear axisymmetric mode shapes at the centre and at
the edge of the circular plate. Examination of these figures shows a rapid increase of the
membrane stress with increasing amplitude of vibration, especially at the centre of the plate. The
non-dimensional radial membrane and total stress distributions associated with the first and
second axisymmetric non-linear mode shapes are plotted in Figs. 13 and 14, respectively, for
various values of the non-dimensional vibration amplitude. It can be seen that the membrane
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stress can be neglected at small vibration amplitudes. For example, the maximum membrane
stress, obtained at the centre of the plate, for a maximum non-dimensional amplitude w�max ¼ 0:5
is only about 6.4% of the membrane stress at the same location at w�max ¼ 2:0 for the first
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non-linear mode shape and less than 7% for the second non-linear axisymmetric mode shape.
Furthermore, the maximum membrane stress at an amplitude of twice the plate thickness is about
33% of the maximum total stress for the first non-linear mode shape and about 48% for the
second non-linear axisymmetric mode shape. This indicates that the membrane stress is very
important in stress analysis and should not be neglected in engineering design of large deflected
structures.
It is to be noted here that the present non-linear iterative results for the bending and membrane

stresses depicted in Figs. 10–12 corresponding to the clamped immovable circular plate
fundamental non-linear mode shape coincide exactly with those obtained in Ref. [10], in which
von K!arm!an equations and the Kantorovich method were used, and results were obtained by
solving numerically a two-point boundary value problem. However, the present model, which
leads to numerical solution of a non-linear eigenvalue problem, is quite interesting due to its
simplicity.

4.2. Explicit analytical solution

The purpose of this section is to replace the iterative method of solution of the set of non-linear
algebraic equations (21), necessary to obtain the clamped circular plate non-linear axisymmetric
mode shapes and non-linear resonance frequencies at large vibration amplitudes, by the explicit
approximate solution presented in Section 3.2. A comparison is then made between the two
solutions, i.e. iterative and analytical, in order to determine the range of validity of the new
approach. In this paper, the investigation is restricted to the fundamental non-linear mode shape
of the clamped immovable circular plate. The numerical values of the clamped immovable circular
plate modal parameters required in the analysis are given in Appendix B. These modal parameters
are computed by using a number of in- and out-of-plane basic functions equal to six.
The amplitude–frequency relationship is given in terms of the preponderant contribution

coefficient a1 of the first out-of-plane basic function by

o�nc
o�c

¼ ½1þ 4:10905a21�
1=2: ð42Þ

If only one out-of-plane basic function is used, Eq. (42) can be rewritten as

o�nc
o�c

¼ ½1þ 0:375638ðw�maxÞ
2�1=2; ð43Þ

where w�max is related here to a1 by w�max ¼ a1ðw�1 Þmax; with ðw�1 Þmax ¼ 3:307396: Eq. (43) differs
slightly from that obtained in Ref. [42] for which the coefficient of ðw�maxÞ

2 was 0.35344. This is due
to the different choices of the spatial shape function. However, it is thought that the present
solution is more accurate since it is based on the exact linear mode shape, instead of the shape
function used in Ref. [42], i.e. wðrÞ ¼ h½1� ðr=aÞ2�2; which was shown in Ref. [5] to yield a
fundamental linear frequency 1% larger than the exact one. It can be seen from Fig. 4, in which
the amplitude–frequency dependence obtained by the single mode equation (43) is also plotted,
that the explicit method gives a good estimate of the non-linear frequency parameter o� for
maximum plate displacement amplitudes up to the plate thickness, with a percentage error below
1% compared with the exact one given by the iterative method.
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The first non-linear amplitude-dependent clamped circular plate mode shape w�nc1ðr
�; a1Þ; for a

maximum non-dimensional amplitude w�max corresponding to a given value of the contribution
coefficient a1; is defined as a series involving the first six axisymmetric clamped circular plate out-
of-plane basic functions by

w�nc1ðr
�; a1Þ ¼ a1w

�
1 ðr

�Þ þ
375:570a31

ð104:363þ 428:833a21 � 1581:744Þ
w�2 ðr

�Þ

�
131:088a31

ð104:363þ 428:833a21 � 7939:547Þ
w�3 ðr

�Þ

þ
111:438a31

ð104:363þ 428:833a21 � 25022:239Þ
w�4 ðr

�Þ

�
92:122a31

ð104:363þ 428:833a21 � 61012:166Þ
w�5 ðr

�Þ

þ
73:639a31

ð104:363þ 428:833a21 � 126429:553Þ
w�6 ðr

�Þ: ð44Þ

The resulting in-plane shape function u�ðr�; a1Þ; for a maximum non-dimensional amplitude w�max

corresponding to a given value of the contribution coefficient a1; is defined as a series involving
the first six in-plane basic functions. In the case of the first formulation for the in-plane basic
function contribution coefficients, i.e., Eq. (38), the in-plane shape function is explicitly given by

u�ðr�; a1Þ ¼ a21½0:1681u�1 ðr
�Þ þ 0:4514u�2 ðr

�Þ

� 0:0401u�3 ðr
�Þ þ 0:0097u�4 ðr

�Þ

� 0:0033u�5 ðr
�Þ þ 0:0014u�6 ðr

�Þ�: ð45Þ

Explicit analytical expressions for the non-dimensional bending and membrane stresses can also
be determined quite easily by replacing the explicit formula (44) for the transverse non-linear
mode shape and the corresponding ones for the in-plane shape function, i.e., Eq. (45) or its
equivalent based on the second formulation, in the expressions for the stresses given in
Appendix A. The analytical method of solution preserves the overall trends of the membrane and
bending stress changes with the increase of the amplitude of vibration as may be seen in Figs.
10(a), 11(a) and 12(a), in which comparisons are made between the stresses at the centre and at the
edge of the plate obtained by the iterative and explicit methods of solutions. This represents an
important improvement, compared to the single mode approach solution for which the bending
and membrane stresses are respectively linear and parabolic functions of the amplitude of
vibration, as obtained at the centre of a clamped circular plate for example in Ref. [8].
The explicit analytical method of solution applied here to the fundamental non-linear mode

shape of a clamped immovable circular plate seems to be very appropriate for the analysis of
geometrically non-linear free vibration problems. To have an accurate conclusion concerning the
limit of validity of the explicit solution in engineering applications, a criterion was adopted, as in
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Refs. [20,35–37], based on the effects of the assumptions made regarding physical quantities, such
as the non-linear frequency and the maximum membrane and bending stresses obtained
respectively at the centre and at the edge of the circular plate. It was found, as may be seen in
Figs. 4 and 10(a), that for vibration amplitudes up to the plate thickness, the error induced by the
approximate explicit solution does not exceed 1% for the non-linear frequency, and is about
2.32% for the maximum bending stress. It appears from these results that the non-linear
frequency and the bending stress estimates are well approximated for amplitudes up to the
thickness of the plate. Concerning the membrane stress results, it can be seen from Fig. 12(a) that
the second formulation gives more accurate estimates. For example, at an amplitude of vibration
equal to the plate thickness, the error induced for the maximum membrane stress when using the
first formulation is about 8.35%, but this error does not exceed 3.7% when the second
formulation is used. In engineering design of large deflected structures, the maximum total stress
is more important than the individual maximum membrane and bending stresses. In Fig. 15 the
maximum total stress obtained at the clamped edge of the plate by different methods is plotted
against the maximum non-dimensional amplitude of vibration. It can be seen that the two
formulations of the explicit analytical method give identical results and are in good agreement
with the iterative method of solution results for a wide range of vibration amplitudes. For
example, the error induced in the maximum total stress estimates is only about 2.5%, for a non-
dimensional amplitude of vibration equal to the plate thickness.
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Fig. 15. Comparison of the maximum non-dimensional radial total stress associated with the fundamental non-linear

mode shape of a clamped immovable circular plate obtained by: 1, iterative solution; 2, explicit analytical solution: first

formulation; 3, explicit analytical solution: second formulation.
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5. Conclusions

The non-linear axisymmetric free vibration of a clamped immovable thin isotropic circular
plate has been examined theoretically in order to determine the effects of large vibration
amplitudes on the first and second axisymmetric mode shapes and their corresponding natural
frequencies and associated membrane and bending stress distributions. The governing equations
have been derived by assuming transverse harmonic motion and using Hamilton’s principle and
spectral analysis. When the in-plane inertia is neglected, the theory reduces the non-linear free
vibration problem to solution of a set of non-linear algebraic equations, in terms of the
contribution coefficients of the transverse displacement only. This set, which represents a non-
linear eigenvalue problem, is solved by using an iterative numerical procedure. The validity of the
present formulation has been established through comparison of the present results with existing
alternative solutions. Accurate non-linear resonant frequency estimates have been obtained for a
wide range of vibration amplitudes. The bending and membrane stresses are presented and may
be useful in predicting the fatigue life of clamped immovable circular plates undergoing large
amplitude vibrations. The stress analysis has shown the inadequacy of the linear theory (or the
single mode approach) and also the importance of the membrane stress.
The proposed explicit analytical method of solution, which is expected to be very useful in

engineering applications and in further analytical developments, has been applied here in order to
obtain analytical results concerning the fundamental non-linear mode shape of a clamped
immovable circular plate. The numerical results obtained by the explicit method show that the
approximate theory is as accurate as the iterative solution at least up to the plate thickness, and is
better than the single mode approach, since it yields also accurate amplitude-dependent mode
shapes and distributions of the associated membrane and bending stresses.

Appendix A. Stress expressions

The present model including the in-plane displacement in the formulation, allows one to
determine the non-linear bending, membrane and total stresses as opposed to the simplified
formulation neglecting the in-plane deformation for which only the bending stress can be
calculated with an acceptable accuracy [20].
The non-dimensional surface radial bending stress s�br can be defined by

s�br ¼ �
1

2ð1� n2Þ
d2w�

dr�2

� �
þ n

1

r�
dw�

dr�

� �� 	
ðA:1Þ

and the non-dimensional radial membrane stress s�mr is defined by

s�mr ¼
1

1� n2
du�

dr�
þ
1

2

dw�

dr�

� �2

þn
u�

r�

" #
: ðA:2Þ

The relationship between the dimensional and non-dimensional bending and membrane stresses is

s� ¼
sa2

Eh2
: ðA:3Þ
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The non-dimensional maximum radial total stress is defined as

s�tr ¼ s�mr7s�br: ðA:4Þ

The appropriate sign is chosen depending on the location of the maximum total stress on the
upper or down surfaces of the circular plate.

Appendix B. Modal parameters used in the explicit analytical method for the fundamental mode of a

clamped immovable circular plate

B.1. Numerical values of the modal parameters k1�
ii and b�111i

i k1�
ii b�111i

1 104.36311062 285.88891499
2 1581.74415330 250.38026291
3 7939.54664268 �87.39203901
4 25022.23904511 74.29229956
5 61012.16607457 �61.41480222
6 126429.55253003 49.09297163

B.2. Numerical values of the modal parameters d�1ij

½d�1ij� ¼

0:16809881 0:45136661 �0:04012269 0:00971334 �0:00329169 0:00136092

�1:60520282 0:54701817 0:63662388 �0:07867129 0:02381642 �0:00946948

�0:78285908 �1:60714541 0:60086572 0:72891760 �0:10233632 0:03456412

0:54309456 �0:45263477 �1:55806294 0:61821792 0:78385332 �0:11755908

�0:43543641 0:27857495 �0:35552524 �1:52053028 0:62595505 0:82034889

0:36663070 �0:21630309 0:19664790 �0:31282160 �1:49347459 0:63007159

2
666666664

3
777777775
:

Appendix C. Nomenclature

r; y; z cylindrical co-ordinates
U ;W in-plane and out-of-plane displacements of the middle plane point ðr; yÞ

respectively
er; ey radial and circumferential strains
Vb;Vm;V bending, membrane and total strain energy respectively
E Young’s modulus
n the Poisson ratio of the plate material
r mass per unit volume of the plate material
a; h radius and thickness of the circular plate respectively
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D bending stiffness of the plate, D ¼ Eh3=ð12ð1� n2ÞÞ
T kinetic energy
wðrÞ transverse shape function, W ðr; tÞ ¼ wðrÞ cosðotÞ
uðrÞ in-plane shape function, Uðr; tÞ ¼ uðrÞ cos2ðotÞ
ai; bi contribution coefficient of the ith out-of- and in-plane basic function respectively:

wðrÞ ¼ aiwiðrÞ; uðrÞ ¼ biuiðrÞ
pi; po number of in- and out-of-plane basic functions respectively
k1

ij ;m
1
ij ; b

1
ijkl general terms of the rigidity tensor, the mass tensor and the fourth order

non-linearity tensor, respectively, associated with the transverse displacement
k2

ij ;m
2
ij general terms of the rigidity tensor and the mass tensor, respectively, associated

with the in-plane displacement
cijk general term of the third order non-linearity rigidity tensor representing the

coupling between the in- and the out-of-plane displacements
b�ijkl general term of the fourth order non-linearity rigidity tensor taking into account

the influence of the in-plane displacement
d�ijk general term of the third order tensor allowing the calculation of the kth in-plane

contribution coefficient
u�i ðr

�Þ;w�i ðr
�Þ the ith in- and out-of-plane basic functions respectively

r� non-dimensional radial co-ordinate, r� ¼ r=a

l thickness to radius ratio of the circular plate, l ¼ h=a
o non-linear frequency parameter
bi the ith transverse eigenvalue parameter for a clamped axisymmetric circular plate
ðo�c Þi the ith non-dimensional linear natural frequency of axisymmetric vibrations of

clamped circular plates: ðo�c Þi ¼ b2i
ai the ith in-plane eigenvalue parameter for a clamped immovable axisymmetric

circular plate
fAg column matrix of out-of-plane contribution coefficients, fAg ¼ ½a1 a2 y apo�
½Knl�� the non-dimensional non-linear geometrical stiffness matrix
w�max maximum non-dimensional vibration amplitude
ei ðia1Þ contribution coefficient of the ith transverse basic function
w�nl1ðr

�; a1Þ the first clamped immovable circular plate non-linear mode shape for a given
assigned value a1 of the first basic function

s�br non-dimensional surface radial bending stress
s�mr non-dimensional radial membrane stress
s�tr non-dimensional surface radial total stress
� star exponent indicates non-dimensional parameters
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